

Custom components that drive tomorrow's technologies.

Shaft and housing materials, coatings, and lubricants for optimal cryogenic sealing

Technical Report TR-75 (Rev. C; 07-28-15) (100-56-1, 100-56-2)

USA 92610-2610

t +1 949 460 2100 t +31 20 638 6523 f +1 949 460 2300 f +31 20 625 6018 www.balseal.com

Suite 901, Chi19650 PaulingJollemanhof 16, 5th floorFoothill Ranch, CA1019 GW AmsterdamUSA 92610-2610The Nettorian The Netherlands

www.balseal.nl

Suite 901, Chinachem 178 Gloucester Road, Wanchai, Hong Kong

t +852 28681860 f +852 22956753 www.balseal.com.hk

Contents

1.0	Introduction
2.0	Coatings and Platings 3
3.0	Lubrication 4
4.0	Shaft and Housing Materials

The information, descriptions, recommendations and opinions set forth herein are offered solely for your consideration, inquiry, and verification and are not, in part or in whole, to be construed as constituting a warranty, expressed or implied, nor shall they form or be a part of the basis of any bargain with Bal Seal Engineering, Inc.. If any sample or model was shown to or provided by Buyer/User, such sample or model was used merely to illustrate the general description and type of goods. Such use is not to be construed as a warranty that the goods will conform to the sample or model. Furthermore, THE IMPLED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ALL OTHER WARRANTIES, IMPLIED OR EXPRESSED, ARE EXCLUDED AND SHALL NOT APPLY. This document provides product options for further investigation by Buyers/Users having technical expertise. The Buyer/User, through its own analysis and testing, is solely responsible for making the final selection of the products and for assuming that all performance, safety and warning requirements for the application are met. It is recommended that Buyers/Users run evaluation testing under actual service conditions to determine whether proposed Bal Seal Engineering products are suitable for the intended purpose. Nothing contained herein or in any of our literature shall be considered a license or recommendation for any use that may infringe patent rights. (LE-17)

©Copyright 2016 Bal Seal Engineering, Inc. U.S.A.

1.0 Introduction

Bal Seal Engineering Inc. is a leading manufacturer of fluid seals used for cryogenic service. Sealing at cryogenic temperatures is difficult, and many factors influence seal performance. This report includes guidelines for selecting coatings, platings, lubricants, and shaft and housing materials that can be used to improve seal performance at cryogenic temperatures. For the purpose of this report, *cryogenic* is defined as usually –100 °F or lower.

2.0 Coatings and Platings

Coatings and platings are used to improve wear resistance and increase the hardness of a shaft or housing material. They are recommended to reduce friction and seal wear. Some coatings and platings used in cryogenic service are described in Table 1.

Coating or Plating	Hard Anodizing Coating, Type III	Dense Chrome Plating	Electroless Nickel Plating	Titanium Nitride Coating (PVD)
Description	 Aluminum oxide Thickness = 0.0005–0.0020 in. 	 Electrolytic process that deposits a high chromium alloy Thickness = 0.0002–0.0006 in. (0.00508–0.01524 mm) 	 Deposits a phosphorus– nickel alloy in a chemical bath Thickness = 0.001–0.004 in. (0.0254–0.1016 mm) 	 Uses nitrogen as a surface-hardening agent Thickness = 0.000039–0.000079 in. (0.0009906– 0.0020066 mm)
Surface Hardness	60–65 RC	70–72 RC	48–52 RC as plated 58–64 RC after heat treating	86 RC
Shaft and Housing Materials	6061 – T6 Low wear resistance with 2024-T361	15-5 pH, A-286 and 300 series stainless steel	15-5 pH, A-286 and 300 series stainless steel	15-5 pH, A-286 and 300 series stainless steel
Specifications	MIL-A-8625	MIL-DTL-23422	SAE-AMS-2404	None
Advantages and Applications	 Reduces friction Reduces seal wear Increases wear resistance Increases hardness Improves surface finish Uses dry film lubricants 	 Reduces friction Reduces seal wear Increases wear resistance Improves surface finish Reduces galling Improves corrosion resistance Improves fatigue strength 	 Improves corrosion resistance Reduces friction Increases wear resistance Reduces seal wear 	 Improves fatigue wear Reduces seal wear Increases wear resistance Provides a hard surface Improves resistance to fatigue
Notes	 Hone or polish after application Apply dry lubricants to surface irregularities 	 Generally used for interior surfaces with wet lubricants Bore diameters Hone or polish after application 	 Plating for intricate surfaces Small or deep bores Stress-relieving after plating Light honing or polishing after application 	• No dimensional changes
Applicable Bal Seal Engineering Technical Reports	TR-17	TR-14	TR-16	TR-24

Table 1: Coatings and Platings for Cryogenic Sealing

3.0 Lubrication

Wet lubricants may be used at temperatures to -77 °F (-60 °C). At lower temperatures, dry lubricant should be used. Dry lubricants are recommended for cryogenic service because they improve seal performance and create a protective film between the seal and sealing surface. This protective film reduces friction and seal wear, minimizes galling, and improves sealing ability. Some lubricants used at low and cryogenic temperatures are described below in Tables 2 and 3.

Table 2: Wet lubricants for low temperatures to -77 °F (-60 °C)

Wet Lubricant Source		Description	Application		
Krytox: greases and oils	Chemours USA Fluoroproducts 1007 Market St. Wilmington, DE (800) 424-7502	Fluorinated oils and greases	 Substantially inert Non-flammable Liquid oxygen (LOX) compatible 		
Halocarbon oils	Halocarbon Products Corp. 887 Kinderkamack Rd. River Edge, NJ (201) 262-8899	Polymers of chlorotrifluoroethylene	 LOX and liquid nitrogen (LN) Pumps LOX compatible Non-flammable 		

Table 3: Dry lubricants for cryogenic service and other applications

Dry Lubricant Source		Description	Application		
Microseal	Metal Improvement Co. 80 Rte. 4 E, Ste. 310 Paramus, NJ 07652 (201) 843-7800	Proprietary impingement process deposits a precise amount of graphite and molydisulfide.	 Reduces possibility of galling Precisely control thickness Improves surface finish		
Molydisulfide Spray Coating	Anadite, Inc. 10647 Garfield Ave. Southgate, CA 90280 (562) 862-4786	Weak bonding force between sulfur atoms enables layers of lattice molecular structure to slide.	 Vacuum and inert gas service Improves sealing ability Reduces friction Reduces seal wear Removes excess by polishing 		
Graphite Spray-On Coating	Crest Coating, Inc. 1361 S. Allec St. Anaheim, CA 92805 (714) 635-7090	Moisture promotes slippage between weakly bonded layers of lattice molecular structure.	 Reduces friction Improves sealing ability Provides self-release properties Reduces seal wear Removes excess by polishing 		

4.0 Shaft and Housing Materials

Most structural metals, such as aluminum, nickel, aluminum alloys, nickel alloys, and 300-series stainless steels, provide good service at cryogenic temperatures. Some of the mechanical properties of metals typically used in low temperature equipment are indicated in Table 4.

Table 4: Shaft and housing materials for cryogenic service

Material	Condition	Tensile Strength (psi)	Yield Strength (psi)	Elongation (%)	Rockwell Hardness		Basic composition (% by weight)	on	Application	
Stainless Steel	Annealed	150,000	110,000	10	34 HRC	C = 0.07 Mn = 2.00	Cr = 15.00		 General purpose: dams, housing, etc. Higher 	
15-5 pH	Heat- treated	200,000	185,000	14	44 HRC	Si = 1.00 C	Cb = 0.35		mechanical properties than 17-4 pH	
Stainless Steel A-286	Solution- treated and aged	169,000	115,000	22	30 HRC	C = 0.05 Mn = 1.40 Si = 0.05	Cr = 14.75 Ni = 25.25 Mo = 1.30	Ti = 2.15 AI = 0.15 V = 0.30	 Excellent corrosion resistance Screws, bolts, etc. 	
Stainless Steel	Annealed	90,000	35,000	50	84 HRB	C = 0.15	Cr = 18.00 Ni = 9.00		 General purpose: very low speeds and pressures Moderate 	
303	Cold- worked 20%	100,000	60,000	40	20 HRC	Si = 1.00	Mo = 0.60		corrosion resistance	
Stainless Steel	Annealed	85,000	35,000	55	85 HRB	C = 0.03 Mn = 2.00 Si = 1.00	C = 0.03	Cr = 19.00		 Non-magnetic applications Low speeds and processor
304L	Cold- worked 20%	130,000	118,000	15	28 HRC		11-10.00		Moderate corrosion resistance	
Stainless Steel	Annealed	85,000	35,000	55	85 HRB	C = 0.08 Mn = 2.00 Si = 1.00	Cr = 17.00		 Solid-spray environments Low speeds and pressures 	
316	Cold- worked 20%	130,000	118,000	15	28 HRC		Si = 1.00	Mo = 2.50		• Excellent corrosion resistance
Stainless Steel	Annealed	85,000	35,000	55	85 HRB	C = 0.03 Mn = 2.00 Si = 1.00	Cr = 17.00		 Applications requiring welding Low speeds and pressures 	
316L	Cold- worked 20%	130,000	118,000	15	28 HRC		Si = 1.00	Si = 1.00	Mo = 2.50	
Aluminum Alloy 2024-T361	n/a	72,000	57,000	13	n/a	Fe = 0.50 Mn = 0.60 Si = 0.50	Cr = 0.10 Mg = 1.50 Zn = 0.25	Cu = 4.35 Ti = 0.15	General purpose: valve bodies, poppets, etc.	
Aluminum Alloy 6061-T6	n/a	45,000	40,000	17	60 HRB	Fe = 0.70 Mn = 0.15 Si = 0.60	Cr = 0.20 Mg = 1.00 Zn = 0.25	Cu = 0.15 Ti = 0.15	 When a greater degree of grain structure is required Salt spray applications 	
Titanium TI-6 AL-4V	Annealed	135,000	130,000	12	n/a	AI = 6.13 V = 4.00 N = 0.07	C = 0.10 Fe = 0.40 O = 0.30		• Valve bodies, poppets, etc.	

