

EXTRUSION LENGTHS OF BAL SEAL[®] MATERIALS USED IN HIGH-PRESSURE SERVICE

Seals used in plunger pumps are often subject to pressures as high as 30,000 psi (2,109 kg/cm²). These seals are subject to extrusion, depending on the temperatures, pressures and radial clearances.

Listed below are the extrusion values of various Bal Seal[®] materials tested at pressures from 10,000 to 30,000 psi (703 to 2,109 kg/cm²). The testing method for Bal Seal UPC-16 and GFP-10 materials is shown in Figure 1A. The testing method for Bal Seal P-41 material is shown in Figure 1B. Test results are shown in Table 1.

Method Used to Test Extrusion of Bal Seal Materials

Material	Pressure PSI (kg/cm²)	"E" Clearance Inch <i>(mm)</i>	"L" Extrusion Inch <i>(mm)</i>	Pressure PSI (kg/cm²)	"E" Clearance Inch <i>(mm)</i>	"L" Extrusion Inch <i>(mm)</i>	
UPC-16	10,000 <i>(703)</i>	0.004 <i>(0.10)</i> 0.010 <i>(0.25)</i> 0.018 <i>(0.46)</i>	0.0017 <i>(0.043)</i> 0.0028 <i>(0.071)</i> 0.0038 <i>(0.097)</i>	15,000 <i>(1,055)</i> 30,000 <i>(2,109)</i>	0.004 (0.10) 0.010 (0.25) 0.004 (0.10)	0.0079 <i>(0.201)</i> 0.0100 <i>(0.254)</i> 0.0194 <i>(0.493)</i>	
GFP-10	10,000 <i>(703)</i>	0.004 <i>(0.10)</i> 0.010 <i>(0.25)</i> 0.018 <i>(0.46)</i>	0.0037 (0.094) 0.0058 (0.147) 0.0068 (0.173)	20,000 (1,406)	0.004 <i>(0.10)</i> 0.010 <i>(0.25)</i>	0.0110 <i>(0.279)</i> 0.0257 <i>(0.653)</i>	
P-41	30,000 (2,109)	0.004 <i>(0.10)</i> 0.010 <i>(0.25)</i> 0.018 <i>(0.46)</i>	Not measurable 0.0006 <i>(0.015)</i> 0.0011 <i>(0.028)</i>	UPC-16: Ultr GFP-10: Gra Higi poly P-41:	JPC-16: Ultra-high molecular weight polyethylene SFP-10: Graphite-fiber reinforced PTFE High-performance BAL [™] Seal aromatic polymer P-41:		

FIGURE 2:

Extrusion of Bal Seal seals and back-up rings when pressure is sustained for sixty minutes at 70°F (21°C) at the pressures and radial clearances indicated

Extrusion increases as pressure and radial clearance ("E") increases. Bal Seal P-41 material has the greatest extrusion resistance. No measurable extrusion was recorded at 30,000 psi (2,109 kg/cm²) or at a radial clearance of 0.004 inch (0.10 millimeter). Optimum results are obtained when the seal is supported with a P-41 back-up ring and radial clearances are minimized.

For more information and technical assistance, consult the Technical Sales Department.